Quality and quantity of work in lab – 40%

The capstone advisor(s) have the flexibility to judge – as objectively as possible – the performance of the student on a day-to-day basis. This judgment should consider progress on the project itself, as well as the student's ability to function effectively as a member of a research lab group. Specific items to be considered include planning tasks, record keeping, adherence to safety guidelines, following experimental procedures and good lab practice, communication with advisors and group members, follow-through on agreements, and time spent on the project or in lab.

Table 1 provides a rubric for evaluating a student's performance on the practical aspects of conducting the design project.

ABET	Table 1. Lacii D5 DIOL gradua		2	2	1	
Outcome	Ability	Exemplary	Proficient	Apprentice	Novice	Score
outcome						
	Identify, formulate, and solve	Medical or scientific need is	Medical or scientific need is	Student understands how results	Student did not show	
	complex engineering problems	clearly understood as student	understood; current costs	and next steps relate to medical	understanding of need for	
	by applying principles of	tells mentors how results and	(health, economic, social, etc.)	or scientific need only when told;	project, problem was not	
	engineering, science, and	next steps related to scientific or		current costs were considered;	addressable by engineering	
	mathematics: Recognize need in		cast as engineering challenge;	engineering design may be	solutions, and/or the student did	
A1			device or process was shown to	inappropriate for challenge;	not understand clearly why the	
	evaluate its relative and absolute	were used to justify project;	be an effective solution, or	demonstrated some	attempted solution did not satisfy	
	importance; cast need as	· · · · · · · · · · · · · · · · · · ·	student at least understood the	understanding of the	the stated needs.	
	engineering challenge;	be an effective solution, or	effectiveness of the attempted	effectiveness (or lack thereof) of		
	demonstrate device or process	5	solutions.	attempted solution.		
	that addresses the problem.	outcome of efficacy testing.				
	Apply engineering design to	Realistic design constraints,	Multiple realistic constraints	Realistic constraints were	Failure to identify and/or	
	produce solutions that meet	including appropriate	(including any relevant	integrated into the design	incorporate relevant realistic	
	specified needs with	engineering and experimental	engineering standards) were	process but some obvious ones	constraints into design process.	
	consideration of public health,	standards, were considered	identified and incorporated into	may be missing. Student	Student did not consider public	
	safety, and welfare, as well as	thoroughly during the design	the design process. Student	considered and incorporated	health, safety, and welfare, nor	
	global, cultural, social,	process. Student completely	considered public health, safety,	public health, safety, and welfare,	global, cultural, social,	
	environmental, and economic		and welfare, global, cultural,	and global, cultural, social,	environmental and economic	
	factors: Apply design plans	and welfare, global, cultural,	social, environmental and		factors and/or failed to	
	developed in BIOEN 401 while	social, environmental and	economic factors and		incorporate those relevant	
	considering multiple design	economic factors and	incorporated the relevant factors	Some risks relevant to the project		
		thoughtfully incorporated the	into design decisions.	were considered and addressed,	Student does not display	
A2		relevant factors into design	Satisfactory consideration of risk		consideration of risk during	
	and engineering standards);	decisions. Risks were	throughout design process.	design adaptation based on	design project. Original design	
	modify and improve the design	considered and thoughtful	Design adaptations based on	acquired results was considered	followed without considering	
	based on experimental results to	trade-offs were made during	acquired results were considered	but not tested.	modifications.	
	meet specified needs (iterate on	design process. Design	to better adapt the design to the			
	design); consider risks and trade-	adaptations based on acquired	desired needs. At least one			
	offs during design process.	results were considered to	design adaptation (based on			
		better adapt the design to the	acquired results) was considered			
		desired needs. More than one	and tested.			
		option was considered and				
		tested and the best option was				
		utilized.				

Table 1. Each BS BIOE graduate will conduct a design **project** that shows his/her ability to...

BIOEN 402 SYLLABUS FOR 2018-19

A3	active, effective communication with lab members and advisors. Scheduling and form of communication depends on the lab group and agreements with the advisor.	-	communication with lab members and advisor. Provided written reports on time and was prepared for group meetings. Could be counted on to communicate effectively with	Student maintained intermittent, communication when required. Written reports were submitted eventually, and participation in group meetings was minimal. Advisor needs to oversee communication with collaborators. Clarity of oral presentations may be lacking.	Student seldom responds to email, Attendance at group meetings was minimal. Advisor reluctant to let student communicate with collaborators. Oral presentations need work.	
A4	professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts: Display knowledge of ethical and professional responsibilities surrounding the design, such as regulatory matters	surrounding the design, such as regulatory matters including standards, and environmental, social, legal, ethical, geopolitical consequences and uses that knowledge to make informed judgements during the design process. Can describe impact of solution in global, economic,	global, economic, environmental, and societal considerations relevant to project and utilizes knowledge to make informed	shallow discussion of the ramifications.	Identifies only a few of the obvious global, economic, environmental, and societal considerations surrounding the engineering design solution, with no discussion of the ramifications.	
А5	whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives: Function effectively as a member of a research team as defined by the PI, through behaviors such as integrating lab resources, objectives, and expectations into project planning and execution. Solicit and integrate feedback	working with their team to establish project goals, plan tasks, and meet objectives. Student was proactive about soliciting feedback from mentors	Student usually contributed to a collaborative and inclusive	Student exhibited developing team-working abilities and may have not met the expectations set by the PI. Student was somewhat effective at working with their team to establish project goals, plan tasks, and meet objectives but may have needed more guidance and prompting than expected. Student did not solicit feedback from mentors during the Capstone process, and/or failed to incorporate that feedback. Student did not usually contribute to a collaborative and inclusive environment.		

A6	Develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions: Utilize BioE skills to test experimental hypotheses or prototypes from design plans developed in BIOEN 401; correctly analyze results; compile/interpret results in a permanent record such as lab notebook or written reports.	Appropriate analytical methods were selected and correctly implemented and interpreted. Quality laboratory conduct was followed including: results compiled in a professional manner in lab notebook or written reports. Exhibits independence in selecting next steps.	Analytical methods were appropriately designed and correctly implemented and interpreted. Basic laboratory conduct was followed including lab notebook, detailed notes or written reports.	Analytical methods were appropriate, but implementation and/or interpretation may be questionable. Basic laboratory conduct was followed including lab notebook or detailed notes and reports.	Analytical tools applied were inappropriate and/or not implemented correctly. Basic laboratory conduct was only partially followed (inadequate details in lab notebook or infrequent reports).	
A7	Acquire and apply new knowledge as needed, using appropriate learning strategies: Shows an ability to keep up with continuous progress in the field during project. See note (1) below.	Current literature is monitored. Key advances relevant to the project are identified and considered as motivation for changes in the project. Student welcomes opportunities to attend conferences, if available.	Literature is monitored, and key advances relevant to the project are identified but impact on project may not be recognized.	Student reads relevant current literature when its existence is pointed out by mentors. Student is not interested in interpersonal communication as means to advance knowledge.	Either ability or motivation to engage with current literature is lacking. Never discusses literature with mentors.	
Apply math (Program Criterion W)	Apply mathematics (including statistics) and engineering to solve bio/biomedical engineering problems. Preparation on this topic via Capstone should emphasize statistical analysis when appropriate to support conclusions.	Masters appropriate mathematical techniques or extended math capabilities appropriate for undergraduate curriculum; addresses each hypothesis posed in experimental design; performs statistical analysis using appropriate methods, large sample sizes and thorough control experiments.	Correctly applies undergraduate- level engineering mathematics in theoretical analysis; addresses hypotheses posed in experimental design; performs statistical analysis to assess statistical significance of conclusions, with appropriate methods, adequate sample sizes and some control experiments.	statistical analysis to assess	Incorrectly applies engineering mathematics; does not quantitatively address hypotheses posed in experimental design.	

(1) Assessing the ability to **acquire and apply new knowledge as needed, using appropriate learning strategies**: Students should be able to relate: A brief history of their technical field, starting from a point that predates their advisors' entry into the field; Recent and ongoing advances in the field, especially those that change the goals, methods, and analysis of their projects; A set of new skills or knowledge that must be learned before the next major step in this project or research can be taken. Suggested criteria for assessing a student's ability to acquire and apply new knowledge, using appropriate learning strategies are: An ability to gain access to available academic resources and to navigate them to obtain information needed for the project – including texts, specialized periodicals, and technical databases; An ability to seek out and communicate with persons who possess knowledge that cannot be learned effectively from impersonal means; An ability to assimilate newly acquired knowledge into one's existing understanding of technology; An ability to assess which endeavors are worthy of pursuit, in order to apply time and energy effectively.