A culture of Belonging in UW Bioengineering

At the University of Washington, diversity, equity, and inclusion are integral to excellence. We value and honor diverse experiences and perspectives, strive to create welcoming and respectful learning environments, and promote access, opportunity, and justice  for all.

Two women in Lutz lab at whiteboard

What Justice, Equity, Diversity and Inclusion means to the UW Bioengineering Community

Towards Justice, we believe that engineers must understand the social justice aspects of technology research and development practices, and are therefore including these topics in our curriculum. Towards Equity, we believe that admissions, hiring and retention practices must utilize best practices shown to overcome institutional and individual biases. Our Department values Diversity as individual differences (e.g., personality, prior knowledge, and life experiences) and group/social differences (e.g., race/ethnicity, class, gender, sexual orientation, country of origin, and ability as well as cultural, political, religious, or other affiliations)1. We seek to have our educational and research programs represent the diversity of our country. Towards Inclusion, the Department focuses on intentionally creating a welcoming environment for everyone, absent of negative feelings and experiences such as fear, insecurity, social tensions, and unaddressed microaggressions, as well as fostering active, intentional, and ongoing engagement with diversity (1,2).  These efforts are multi-dimensional and include collaborations with numerous UW programs, recruitment efforts, policies, curriculum, practices, faculty/staff promotions, decision making, and mentoring and continuing education for members of our community.

Three students in Lutz lab

Justice, Equity, Diversity and Inclusion (JEDI) Committee

The UW Bioengineering JEDI committee has been tasked with developing mechanisms and providing guidance to increase our department’s level of expertise on equity and inclusive teaching and mentoring, and to provide similar expertise to our trainees.

JEDI Resources

Race and Ethnicity

Gender

LGBTQ

Individuals with disabilities

International students

INCLUSIVE ADMISSIONS OR HIRING

INCLUSIVE TEACHING

UW INSTITUTIONAL MISSIONS, POLICIES, AND RESOURCES

Feedback & Reporting Mechanisms

It is our goal that all members of the BIOE community feel included and supported. We want to highlight the resources available to you if you would like to provide feedback to improve the program or resolve a situation, or would like support in an incident of bias. We have provided links to different methods of providing feedback or reporting, and some information to help you decide which suits your purpose.

See also

Diversity at the University of Washington

UW Equity Focus, the UW’s hub for stories highlighting diversity and equity

In the News

  • Suzie Pun, Professor of Bioengineering

Suzie Pun elected to Washington State Academy of Sciences 2018

July 22nd, 2018|

Suzie Pun, the Robert F. Rushmer Professor of Bioengineering, is one of 14 UW faculty elected to the Washington State Academy of Sciences in 2018. The academy’s mission is “to provide expert scientific and engineering analysis to inform public policymaking in Washington, and to increase the role and visibility of science in the state.”

  • A-Alpha Bio is developing a platform that uses genetically engineered yeast to help scientists test hundreds of drug candidates against thousands of potential targets.

A-Alpha Bio turns research into impact

July 16th, 2018|

Learning the language of business, with the help of UW's Buerk Center for Entrepreneurship, enabled the A-Alpha Bio team to launch their ideas from the lab to a startup company, and introduce their technology to Seattle's entrepreneurship community and beyond.

  • Schematic and characterization of RNP8 and its intermediates

A ribonucleoprotein octamer for targeted siRNA delivery

July 4th, 2018|

Professor Xiaohu Gao and colleagues have created a new way to target prostate tumors that overcomes past challenges of designing effective drug delivery methods. This versatile nanocarrier design should offer opportunities for the clinical translation of therapies based on intracellularly acting biologics.