Project Description

Jagjeet and Janice Bindra Endowed Career Development Associate Professor in Chemical Engineering
Associate Professor UW Bioengineering
Adjunct Professor UW’s Department of Radiology
Email: eanance@uw.edu

Elizabeth Nance

https://www.nancelab.com/

Our overarching goal is to develop tools that inform how we can more effectively treat the diseased brain, using nanotechnology as both a probe and as a therapeutic delivery vehicle. We integrate in vitro to in vivo models with imaging, molecular biology, and data science tools to extract statistically relevant information that captures changes in the brain that might influence how a therapeutic behaves. We have used the information gathered from application of these tools to design nano-based therapeutics that can achieve region- and cell-specific targeting in the brain for improved neuroprotection in a variety of brain injury models.

Quantify and predict nanoparticle transport, compartmentalization and fate

Engineer effective nanotherapeutics for neurological disease

Probe developmental and disease processes to elucidate insights into structure-function

Develop robust, unbiased, and quantitative fluorescent image analysis pipelines

Gathering information about a disease in order to direct treatment is difficult because the disease microenvironment is dynamic, heterogeneous, and variable from person to person. Delivering drugs to this environment is also challenging, because the body and the disease are very effective at keeping drugs out or adapting to minimize the effect of the drug. Many drugs are directed at one aspect of the disease but the interactions of the drug within the body are not always well-understood. The use of nanotechnology to improve drug delivery, efficacy, and specificity has been successful preclinically, but has failed to translate to clinical use at a rate that reflects the preclinical potential. Of the current clinically approved nanotechnologies in 2019, none are indicated for non-cancerous neurological disease, which represents 13% of the global disease burden. Therefore, our overarching goal is to develop tools that inform how we can more effectively treat the diseased brain, using nanotechnology as both a probe and as a therapeutic delivery vehicle. 

Ph.D. in chemical & biomolecular engineering from Johns Hopkins University

B.S. in chemical engineering from North Carolina State University

Postdoctoral research with an emphasis in neuroscience at Johns Hopkins School of Medicine

In 2019, Elizabeth received the prestigious Presidential Early Career Achievement in Science & Engineering (PECASE) award, and the UW Undergraduate Research Mentor Award. She is a recipient of the National Institute of General Medical Sciences (NIGMS) R35 MIRA award. In 2018, she was named the European Union’s Horizons 20/20 program Inspiring Young Scientist in Nanomedicine, and she was honored as a Young Innovator in Nanobiotechnology by Nano Research. In 2015, she was listed on Forbes 30 under 30 in Science and Medicine as one of the “most disruptive, game-changing and innovating young personalities in science.”

Elizabeth actively mentors young women, from middle school age to post-graduate level, in exploring and pursuing STEM fields.  In 2016, she founded Women in Chemical Engineering (WChE), an organization for women college students, and their allies, working to empower and advocate for women in ChemE. In 2018 she received the Association for Women in Science Early Career Achievement in STEM award for her scientific and outreach work.

2022

51.Joseph A. and Nance E. Nanoparticles and the central nervous system. Annual Reviews in Chemical & Biomolecular Engineering; in press

?

50. Gornalusse G., Zhang M., Wang R., Rwigamba E., Kirby A.C., Fialkow M., Nance E., Hladik F. and Vojtech L. HSV-2 infection enhances Zika virus infection of primary genital epithelial cells independently of the known ZIKV receptor AXL. Frontiers Microbiology

?

49. Nguyen, N.P., Helmbrecht H., Ye Z., Adebayo T., Hashi N., Doan M-A., Nance E. Brain tissue derived extracellular vesicles for therapeutic in neonatal ischemic brain injury. International Journal of Molecular Sciences

?

2021

48. Wood T.R., Hildahl K., Helmbrecht H., Corry K.A., Moralejo D.H., Kolnik S.E., Prater K.E., Juul S.E., Nance E.* A ferret brain slice model of oxygen-glucose deprivation captures regional responses to perinatal injury and treatment associated with specific microglial phenotypes. Bioeng & Transl. Med (2021), e10265, doi: 10.1002/btm2.10265; PDF

?

47. Joseph A., Motchoffo Simo G., Gao T., Alhindi N., Nance E.* Surfactants influence polymeric nanoparticle fate in the brain. Biomaterials (2021) 277: 121086, doi: 10.1016/j.biomaterials.2021.121086  PDF

46. Helmbrecht H., Xu N., Liao R. Nance E.* Data management schema design for effective nanoparticle formulation for neurotherapeutics. AIChE Journal (2021), e17459; doi: 10.1002/aic.17459; PDF

?

45.  Joseph A., Nyambura C., Bondurant D., Corry K., Beebout D., Wood T., Pfaendtner J., Nance E.* Formulation and efficacy of catalase-loaded nanoparticles for the treatment of neonatal hypoxic-ischemic encephalopathy. Pharmaceutics (2021) 13(8), 1131; doi: 10.3390/pharmaceutics13081131 PDF

?

44. Nance E.*, Pun S.*, Saigal R.*, Sellers D.* Drug delivery to the central nervous system. Nature Reviews Materials (2021), doi: 10.1038/s41578-021-00394-w; PDF

?

43. McKenna M., Shackelford D., Ferreira Pontes H., Ball B., Nance E.* Multiple particle tracking detects changes in brain extracellular matrix and predicts neurodevelopment age. ACS Nano (2021), 15(5):8559-8573; doi: 10.1021/acsnano.1c00394; PDF

?

2020

42. Liao R., Wood T., Nance E.* Nanotherapeutic modulation of excitotoxicity and oxidative stress in acute brain injury. Nanobiomedicine (2020) 7:1-18; doi.org/10.1177/1849543520970819; PDF

41. Joseph A., Liao R., Zhang M., Helmbrecht H., McKenna M., Filteau J., Nance E.* Nanoparticle-microglial interaction in the ischemic brain is modulated by injury duration and treatment. Bioengineering & Translational Medicine (2020) August; doi.org/10.1002/btm2.10175; PDF

?

40. Helmbrecht H., Joseph A., Zhang M., McKenna M., Nance E.* Governing transport principles for nanotherapeutic applications in the brain. Current Opinion in Chemical Engineering (2020) 30:112-119 doi.org/10.1016/j.coche.2020.08.010; PDF

?

39.  Liao R., Pon J., Chungyoun M., Nance E.* Enzymatic protection and biocompatibility screening of enzyme-loaded polymeric nanoparticles for neurotherapeutic applications. Biomaterials (2020) July; 257. doi: 10.1016/j.biomaterials.2020.120238; PDF

?

38. Chua C., Ho J., Susnjar A., Lolli G., Di Trani N., Pesaresi F., Sizovs A., Zhang M., Nance E., Grattoni A.* Intratumoral nanofluidic system enhances tumor biodistribution of CD40 antibody in triple negative breast cancer. Advanced Therapeutics (2020) July; doi: 10.1002/adtp.202000055; PDF

?

37. Zhang M., Vojtech L., Ye Z., Hladik F., Nance E.* Quantum dot labeling and visualization of extracellular vesicles. ACS Applied Nano Materials (2020) June 15; 7(3):7211-7222. doi: 10.1021/acsanm.0c01553; PDF

?

36. Liao R., Wood T.R., Nance E*. Superoxide dismutase reduces monosodium glutamate-induced injury in an organotypic whole hemisphere brain slice model of excitotoxicity.  J Biol Eng (2020) Feb 4; 14:3. doi: 10.1186/s13036-020-0226-8; PDF

?

2019

35. Curtis C.D., McKenna M., Pontes H., Toghani D., Choe A., Nance E.* Predicting in situ nanoparticle behavior using multiple particle tracking and artificial neural networks. Nanoscale (2019) Nov 28; 11(46):22515-22530. doi: 10.1039/c9nr06327g. PDF

?

34. Vojtech L., Zhang M., Dave V., Levy C., Hughes S.M., Wang R., Calienes F., Prlic M., Nance E., Hladik F. Extracellular vesicles in human semen modulate antigen-presenting cell function and decrease downstream antiviral T cell responses. PLOS ONE (2019) Oct 17; 14(10):e0223901. doi: 10.1371/journal.pone.0223901 PDF

?

33. Wood T., Nance E.* Disease-directed engineering for physiology-driven treatment interventions. APL Bioengineering (2019) Oct 23; 3(4):040901. doi: 10.1063/1.5117299 PDF

?

32. Yellepeddi V, Joseph A., Nance E.* Pharmacokinetics of nanotechnology-based formulations in pediatric populations. Adv. Drug. Del. Rev. (2019) Nov; 151:44-55. doi: 10.1016/j.addr.2019.08.008 PDF

?

31. Zhang M., Bishop B., Thompson N., Hildahl K., Dang B., Mironchuk O., Chen N., Aoki R., Holmberg V.,* Nance E.* Quantum dot cellular uptake and toxicity in the developing brain: implications for use as imaging probes. Nanoscale advances (2019) 1, 3424-3442. doi: 10.1039/C9NA00334G PDF

?

30. Nance E.* Careers in nanomedicine and drug delivery. Adv. Drug. Del. Rev. (2019) Apr; 144:180-189. doi: 10.1016/j.addr.2019.06.009 PDF

?

29. Millik S.C., Dostie A.M., Karis D.G., Smith P.T., Mckenna M., Chan N., Curtis C.D., Nance E., Theberge A.B., Nelson A.* 3D printed coaxial nozzles for the extrusion of hydrogel tubes toward modeling vascular endothelium. Biofabrication (2019) Jul 12; 11(4):045009. doi: 10.1088/1758-5090/ab2b4d. PDF

?

2018

28. Wood T., Moralejo D., Corry K., Snyder J., Traudt C., Curtis C., Nance E., Parikh P., Juul S.* A ferret model of encephalopathy of prematurity, Developmental Neuroscience (2018) 40(5-6):475-489. doi: 10.1159/000498968. PDF

?

27. Curtis C., Toghani D., Wong B., Nance E.* Colloidal stability as a determinant of nanoparticle behavior in the brain. Colloids and Surfaces B: Biointerfaces (2018) 170, 673-682. doi: 10.1016/j.colsurfb.2018.06.050. PDF

?

26. Joseph A., Wood T., Chen C-C., Corry K., Juul S., Snyder J., Parikh P., Nance E.* Curcumin-loaded brain penetrating nanoparticles for treatment of neonatal hypoxia-ischemia encephalopathy. Nano Research (2018) 11(10): 5670-5688. doi: 10.1007/s12274-018-2104-y. PDF

?

25. Alnasser Y., Kambhampti S.P., Nance E., Rajbhandari L., Shrestha S., Venkatesan A., Kannan R.M., Kannan S.* Preferential and increased uptake of hydroxyl-terminated PAMAM dendrimers by activated microglia in rabbit brain mixed glial culture. Molecules (2018) Apr 27; 23(5). doi: 10.3390/molecules23051025. PDF

?

24. Vornhagen J., Armistead B., Quach P., Santana-Ufret V., Boldenow E., Alishetti V., Melief C., Ngo L.Y., Whidbey C., Doran K.S., Curtis C., Nance E., Rajagopal L.* Group B streptococcus exploits vaginal epithelial exfoliation for ascending infection. J. Clinical Investigation (2018) May 1; 128(5):1985-1999. doi: 10.1172/JCI97043. PDF

?

2017

23. Zhang C., Mastorakos P., Sobral M., Berry S., Song E., Nance E., Eberhard C.G., Hanes J., Suk J.S. Strategies to enhance the distribution of nanoparticles in the brain. J. Control Release (2017) Dec 10; 267:232-239. doi: 10.1016/j.jconrel.2017.07.028. PDF

?

22. Nance E., Kambhampati S.P., Smith E.S. Zhang Z., Zhang F., Singh S., Johnston M.V., Kannan R.M., Blue M.E., Kannan S.* Dendrimer-mediated delivery of N-acetyl cysteine to microglia in a mouse model of Rett Syndrome.  J. Neuroinflammation (2017) Dec 19; 14(1):252. doi: 10.1186/s12974-017-1004-5. PDF

?

21. Smith J., Sprenger K., Liao R., Joseph A., Nance E.,* Pfaendtner J.* Determining dominant driving forces affecting controlled protein release from polymeric nanoparticles. Biointerphases (2017) May 19; 12(2):02D412. doi: 10.1116/1.4983154. PDF

?

20. Zhang C., Nance E., Mastorakos P., Chisholm J., Berry S., Eberhart C., Tyler B., Brem H., Suk J.S., Hanes J.* Convection enhanced delivery of cisplatin-loaded brain penetrating nanoparticles cures malignant glioma in rats. J Control. Release (2017) Oct 10; 263:112-119. doi: 10.1016/j.jconrel.2017.03.007. PDF

?

19. Williams M., Zhang Z., Drewes J., Nance E., Singh S., Kannan S.* Maternal inflammation results in altered tryptophan metabolism in rabbit placenta and fetal brain. Developmental Neuroscience (2017) 39(5):399-412. doi: 10.1159/000471509. PDF

?

18. Nance E.* Brain penetrating nanoparticles for analysis of the brain microenvironment. Methods Mol. Biol. (2017) 1570:91-104. doi: 10.1007/978-1-4939-6840-4_6. PDF

?

2016

17. Curtis C., Zhang M., Liao R., Wood T., Nance E.* Systems-level thinking for nanoparticle-mediated therapeutic delivery to neurological diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. (2016) Mar; 9(2). doi: 10.1002/wnan.1422. PDF

?Selected cover image: Curtis C., Zhang M., Liao R., Wood T. and Nance E.* Cover Image, Volume 9, Issue 2. WIREs Nanomed Nanobiotechnol, (2017) 9: n/a, e1463. doi:10.1002/wnan.1463.

?

16. Zhang F., Nance E., Zhang Z., Jasty V., Mishra M.K., Kambhampati S.P., Burd I., Romero R., Kannan R., Kannan S.* Surface functionality affects the biodistribution and microglia-targeting of intra-amniotically delivered dendrimers. J Control. Release, (2016) Sep 10; 237:61-70. doi: 10.1016/j.jconrel.2016.06.046. PDF

?

15. Nance E., Zhang F., Mishra M.K., Zhang Z., Kambhampati S.P., Kannan R.M.*, Kannan S.* Nanoscale effects in dendrimer-mediated targeting of neuroinflammation. Biomaterials (2016) Sep; 101:96-107. doi: 10.1016/j.biomaterials.2016.05.044. PDF

?

14. Zhang Z., Bassam B., Thomas AG., Williams M., Liu J., Nance E., Rojas C., Slusher BS., Kannan S.* Maternal inflammation leads to impaired glutamate homeostasis and up-regulation of glutamate carboxypeptidase II in activated microglia in the fetal/newborn rabbit brain. Neurobiol. Dis. (2016) Oct; 94:116-28. doi: 10.1016/j.nbd.2016.06.010. PDF

?

13. Zhang F., Nance E., Alnasser Y., Kannan R., Kannan S.* Microglial migration and interactions with dendrimer nanoparticles are altered in the presence of neuroinflammation. J Neuroinflammation (2016) Mar 22; 13(1):65. doi: 10.1186/s12974-016-0529-3. PDF

In the News